

Data Sheet November 2013

15 A, 400 V - 600 V, Hyperfast Diode

The RHRP1540, RHRP1560 is a hyperfast diode with soft recovery characteristics. It has the half recovery time of ultrafast diodes and is silicon nitride passivated ionimplanted epitaxial planar construction. These devices are intended to be used as freewheeling/ clamping diodes and diodes in a variety of switching power supplies and other power switching applications. Their low stored charge and hyperfast soft recovery minimize ringing and electrical noise in many power switching circuits reducing power loss in the switching transistors.

Ordering Information

PART NUMBER	PACKAGE	BRAND
RHRP1540	TO-220AC-2L	RHRP1540
RHRP1560	TO-220AC-2L	RHRP1560

NOTE: When ordering, use the entire part number.

Symbol

Features

- Hyperfast Recovery t_{rr} = 40 ns (@ I_F = 15 A)
- Max Forward Voltage, V_F = 2.1 V (@ T_C = 25°C)
- 400 V, 600 V Reverse Voltage and High Reliability
- · Avalanche Energy Rated
- RoHS Compliant

Applications

- Switching Power Supplies
- · Power Switching Circuits
- General Purpose

Packaging

JEDEC TO-220AC

Absolute Maximum Ratings T _C = 25°C, Unless Otherwise Specified			
	RHRP1540	RHRP1560	UNIT
Peak Repetitive Reverse Voltage	400	600	V
Working Peak Reverse Voltage	400	600	V
DC Blocking VoltageV _R	400	600	V
Average Rectified Forward Current $I_{F(AV)}$ ($T_C = 140^{\circ}C$)	15	15	А
Repetitive Peak Surge Current	30	30	Α
Nonrepetitive Peak Surge Current	200	200	Α
Maximum Power Dissipation	100	100	W
Avalanche Energy (See Figures 10 and 11)	20	20	mJ
Operating and Storage Temperature	-65 to 175	-65 to 175	οС

Electrical Specifications $T_C = 25^{\circ}C$, Unless Otherwise Specified

	TEST CONDITION	RHRP1540		RHRP1560				
SYMBOL		MIN	TYP	MAX	MIN	TYP	MAX	UNIT
V _F	I _F = 15 A	-	-	2.1	-	-	2.1	V
	I _F = 15 A, T _C = 150 ^o C	-	-	1.7	-	-	1.7	V
I _R	V _R = 400 V	-	-	100	-	-	-	μА
	V _R = 600 V	-	-	-	-	-	100	μА
	$V_R = 400 \text{ V}, T_C = 150^{\circ}\text{C}$	-	-	500	-	-	-	μА
	$V_R = 600 \text{ V}, T_C = 150^{\circ}\text{C}$	-	-	-	-	-	500	μА
T _{rr}	I _F = 1 A, dI _F /dt = 100 A/μs	-	-	35	-	-	35	ns
	$I_F = 15 \text{ A}, dI_F/dt = 100 \text{ A/}\mu\text{s}$	-	-	40	-	-	40	ns
t _a	$I_F = 15 \text{ A}, dI_F/dt = 100 \text{ A/}\mu\text{s}$	-	20	-	-	20	-	ns
t _b	$I_F = 15 \text{ A}, dI_F/dt = 100 \text{ A/}\mu\text{s}$	-	15	-	-	15	-	ns
Q _{rr}	$I_F = 15 \text{ A}, dI_F/dt = 100 \text{ A/}\mu\text{s}$	-	40	-	-	40	-	nC
CJ	V _R = 10 V, I _F = 0 A	-	60	-	-	60	-	pF
$R_{ heta JC}$		-	-	1.5	-	-	1.5	°C/W

DEFINITIONS

 V_F = Instantaneous forward voltage (pw = 300 μ s, D = 2%).

 I_R = Instantaneous reverse current .

 T_{rr} = Reverse recovery time (See Figure 9), summation of $t_a + t_b$.

 t_a = Time to reach peak reverse current (See Figure 9).

 t_b = Time from peak I_{RM} to projected zero crossing of I_{RM} based on a straight line from peak I_{RM} through 25% of I_{RM} (See Figure 9).

Q_{rr} = Reverse Recovery Change.

C_J = Junction Capacitance.

 $R_{\theta JC}$ = Thermal resistance junction to case.

pw = Pulse Width.

D = Duty Cycle.

Typical Performance Curves

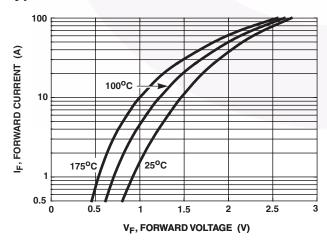


FIGURE 1. FORWARD CURRENT vs FORWARD VOLTAGE

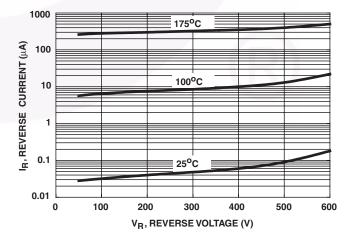


FIGURE 2. REVERSE CURRENT vs REVERSE VOLTAGE

Typical Performance Curves (Continued)

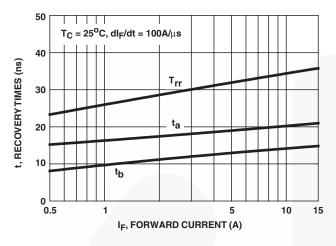


FIGURE 3. T_{rr}, t_a AND t_b CURVES vs FORWARD CURRENT

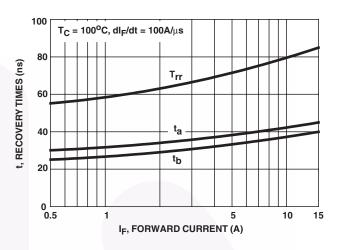


FIGURE 4. T_{rr}, t_a AND t_b CURVES vs FORWARD CURRENT

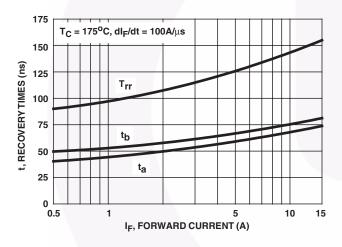


FIGURE 5. T_{rr} , t_a AND t_b CURVES vs FORWARD CURRENT

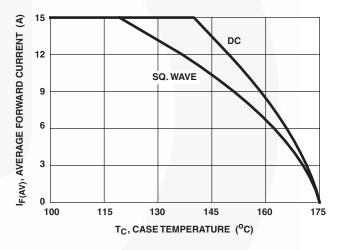


FIGURE 6. CURRENT DERATING CURVE

FIGURE 7. JUNCTION CAPACITANCE vs REVERSE VOLTAGE

Test Circuits and Waveforms

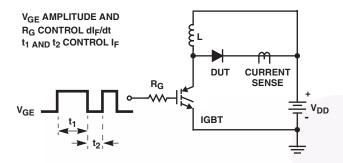


FIGURE 8. T_{rr} TEST CIRCUIT

 $I_{MAX} = 1A$ L = 40mH $R < 0.1\Omega$ $E_{AVL} = 1/2Li^2 \left[V_{R(AVL)} / (V_{R(AVL)} - V_{DD}) \right]$ $Q_1 = IGBT \left(BV_{CES} > DUT V_{R(AVL)} \right)$ Q_1 V_{DD} V_{DD} V_{DD}

FIGURE 10. AVALANCHE ENERGY TEST CIRCUIT

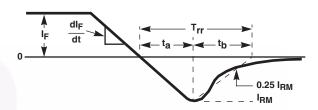


FIGURE 9.Tt_{rr} WAVEFORMS AND DEFINITIONS

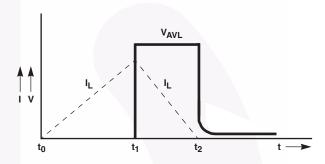
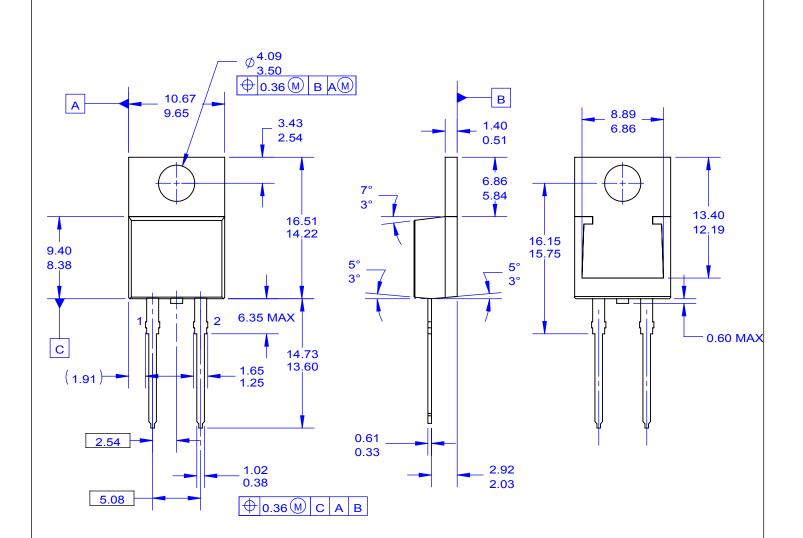
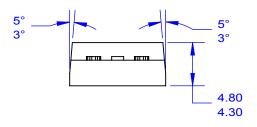




FIGURE 11. AVALANCHE CURRENT AND VOLTAGE WAVEFORMS

NOTES:

- A. PACKAGE REFERENCE: JEDEC TO220,ISSUE K, VARIATION AC,DATED APRIL 2002.
- B. ALL DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSION AND TOLERANCE AS PER ASME Y14.5-2009.
- D. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSIONS.
- E. DRAWING FILE NAME: TO220A02REV5

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ F-PFS™ AttitudeEngine™ FRFET®

Global Power ResourceSM Awinda[®] AX-CAP®*

GreenBridge™ BitSiC™ Green FPS™ Build it Now™ Green FPS™ e-Series™

CorePLUS™ Gmax™ CorePOWER™ $\mathsf{GTO}^{\mathsf{TM}}$ CROSSVOLT™ IntelliMAX™ CTL™ ISOPLANAR™

Current Transfer Logic™ Making Small Speakers Sound Louder

DEUXPEED® and Better™ Dual Cool™ MegaBuck™ EcoSPARK® MIČROCOUPLER™ EfficientMax™ MicroFET™

MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ Fairchild Semiconductor®

MotionGrid® FACT Quiet Series™ MTi[®] FACT[®] MTx® FastvCore™ MVN® FETBench™ mWSaver® FPS™ OptoHiT™ OPTOLOGIC® OPTOPLANAR®

Power Supply WebDesigner™ PowerTrench®

PowerXSTI

Programmable Active Droop™ OFFT

QS™ Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM® STEALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™ Sync-Lock™

SYSTEM SYSTEM TinyBoost[®] TinyBuck[®] TinyCalc™ TinyLogic[®] TINYOPTO™

TinvPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™

TRUECURRENT®* սSerDes™

UHC Ultra FRFET™

UniFET™ VCX™ VisualMax™ VoltagePlus™ XSTM. Xsens™ 仙童®

ESBC™

-®

Fairchild®

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR <u>AIRCHILDSEMI.COM.</u> FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application - including life critical medical equipment - where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com,

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Deminition of Terms		
Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev 177

^{*} Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: